Moving Straight Ahead

Linear Relationships

Henri challenges his older brother Emile to a walking race. Emile walks 2.5 meters per second, and Henri walks 1 meter per second. Emile gives Henri a 45-meter head start. What distance wll allow Henri to win in a close race?

You can estimate the temperature outside by counting cricket chirps. Suppose a cricket chirps n times in one minute. The temperature t in degrees Fahrenheit can be computed with the formula $t=\frac{1}{4} n+40$. What is the temperature if
 a cricket chirps 150 times in a minute?

A$1 l$ around you, things occur in patterns. Once you observe a pattern, you can use the pattern to predict information beyond and between the data observed. The ability to use patterns to make predictions makes it possible for a baseball player to run to the right position to catch a fly ball or for a pilot to estimate the flying time for a trip.

In Variables and Patterns, you investigated relationships between variables. The relationships were displayed as tables, graphs, and equations. Some of the graphs, such
as the graph of distance and time for a van traveling at a steady rate, were straight lines. Relationships with graphs that are straight lines are called linear relationships.

In this unit, you will study linear relationships. You will learn about the characteristics of a linear relationship and how to determine whether a relationship is linear by looking at its equation or at a table of values. You will use what you learn about linear relationships to answer questions like those on the facing page.

Mathematical Highlights

Linear Relationships

In Moving Straight Ahead, you will explore properties of linearity.

You will learn how to

- Recognize problem situations in which two or more variables have a linear relationship to each other
- Construct tables, graphs, and symbolic equations that express linear relationships
- Translate information about linear relations given in a table, a graph, or an equation to one of the other forms
- Understand the connections between linear equations and the patterns in the tables and graphs of those equations: rate of change, slope, and y-intercept
- Solve linear equations
- Solve problems and make decisions about linear relationships using information given in tables, graphs, and symbolic expressions
- Use tables, graphs, and equations of linear relations to answer questions

As you work on the problems in this unit, ask yourself questions about problem situations that involve related quantities:

What are the variables in the problem?
Do the variables in this problem have a linear relationship to each other?
What patterns in the problem suggest that it is linear?
How can the linear relationship be represented in a problem, in a table, in a graph, or with an equation?
How do changes in one variable affect changes in a related variable?
How are these changes captured in a table, graph, or equation?
How can tables, graphs, and equations of linear relationships be used to answer questions?

